
IBM Research AI Hardware Center

Perspectives and Opportunities in AI Hardware

Jeff Burns Director, AI Compute and IBM Research AI Hardware Center

November 5, 2021

The Future of Computing

Bits

Mathematics + Information

Today's Computers and Supercomputers

Neurons Biology + Information

Today's AI Systems

Qubits

Physics + Information

Today's Quantum Systems

The evolution of AI

Narrow AI

Deep learning

Single-task, single-domain, with superhuman accuracy

Requires large amounts of labeled data

Broad AI

Learning + reasoning

Multi-task, multi-domain, multi-modal

Learns with much less data

General AI

True neuro-AI

Cross-domain learning and reasoning

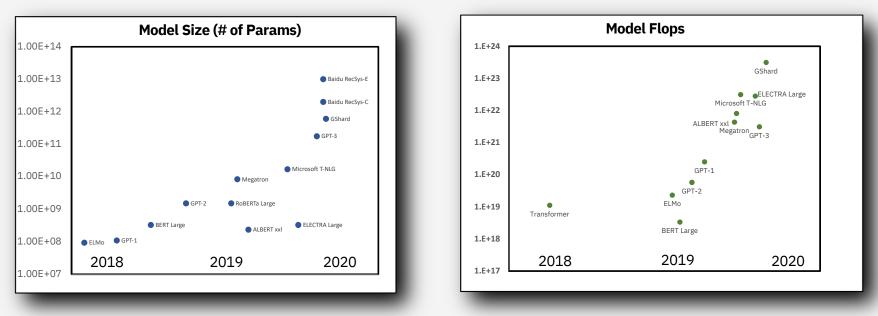
Broad autonomy

Even "narrow AI" relies on computation horsepower

Training Image recognition model

Dataset: ImageNet-22K

Network: ResNet-101



4 GPUs 16 days ~385 kWh 256 GPUs 7 hours ~450 kWh

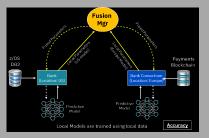
1 model training run is ~2 weeks of home energy consumption

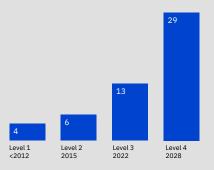
https://arxiv.org/abs/1708.02188

Explosive Growth in AI Compute Needs

- Artificial Intelligence is being applied to an increasing number of domains (vision, speech, NLP ...)
- Explosive growth in model sizes and flops over the past 3-5 years (especially in NLP, recommender, graph models)
- AI accelerator performance needs to grow exponentially to keep up with model growth

"Broad AI" brings even more computational demands and greater functionality requirements at the edge


Multi-Modal Models


Explainability with Neuro-Symbolic Reasoning

Security and Privacy

Number of sensors for different levels of autonomous driving (source: Deloitte)

Question: Are there an equal number of large things and metal spheres?

Program: equal number (count(filter_size(Scene, Large)), count(filter_material (filter_shape(Scene, Sphere), Metal)))

Answer: Yes

Federated learning, data stays at the edge

IBM Research AI Hardware Center

"IBM invests \$2 Billion in New York Research Hub for AI"

Bloomberg

"IBM Bets \$2B Seeking 1000X AI Hardware Performance Boost"

inside HPC.

An ecosystem of enterprise and academic partners

February 7, 2019

Launch Date

\$2B

IBM Investment To Create Artificial Intelligence Hardware Center

\$300M

New York State investment

17 and growing

Members of the IBM Research AI Hardware Center

IBM Research AI Hardware Center

Challenge and Opportunity

AI present an incredible opportunity to extend automation – but at dramatic computational cost

Objective

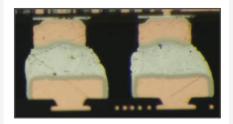
Innovate and lead in AI accelerators for training and inferencing

Technical Approach

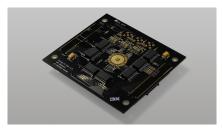
Drive leadership using a full-stack strategy, generating AI accelerator demonstrators with an industry leading roadmap

Partnership

Engage partners to build a community and ecosystem to enable broad application of the Center's innovations


Cores and Architecture

New digital AI cores and architectures, based on fundamental algorithm and computational innovations


Heterogeneous Integration

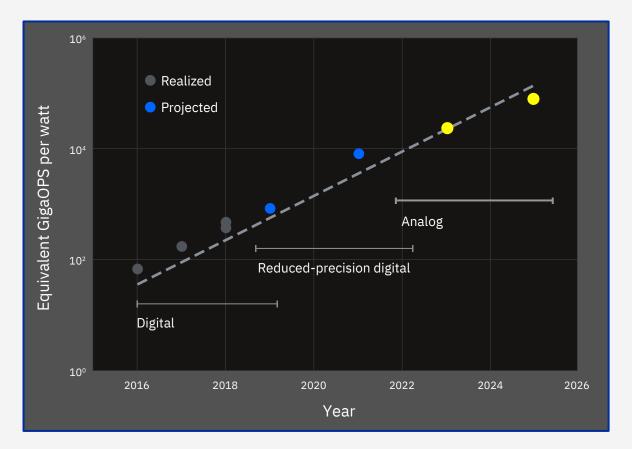
Innovations in advanced laminate, silicon bridges, and 3D to scale connectivity and mitigate bandwidth bottlenecks

Analog Elements

Materials and architectural innovations to enable analog computation for AI inference and training

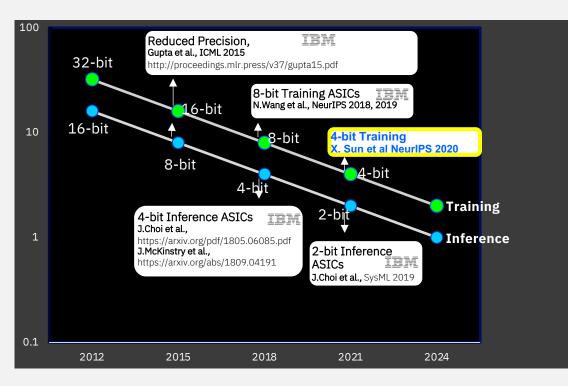
End User AI Testbed

Leverage and develop advanced AI software to utilize new accelerators and capture emerging workload needs



What's next in AI hardware

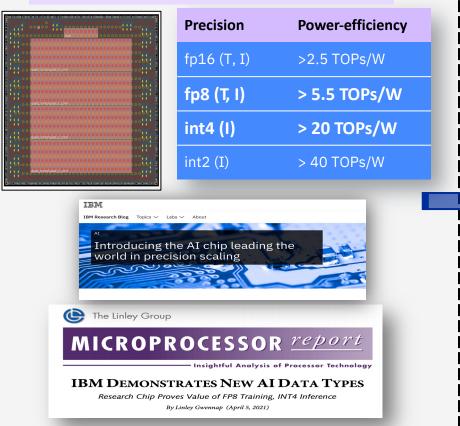
Extending performance by 2.5X / year through 2025


Approximate computing principles applied to **Digital AI Cores** with reduced precision, as well as

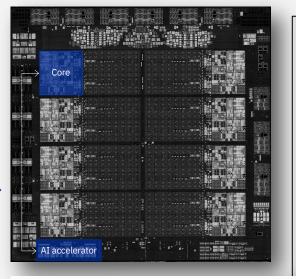
Analog AI Cores, which could potentially offer another **100x in energy-efficiency**

T. Gokmen and Y. Vlasov, Frontiers in Neuroscience 10, pp. 333, 2016

Driving reduced precision with iso accuracy


- Key advancements in reduced precision arithmetic for AI driven by IBM AI Research team.
- First demonstration of 16-bit precision for Deep Learning Training (ICML 2015).
- Demonstration of world's first 8-bit training (NeurIPS 2018, NeurIPS 2019), and world's first 4-bit training (NeurIPS 2020).
- Demonstration of highly accurate 2-bit and 4-bit Inference (SysML 2019)

For reference - Industry standard for training:


- GPU default: 32 bit
- GPU accelerated: 16 bit (V100 & A100)
- TPU: 16 bit (Bfloat)

Digital AI core innovations

100X Improvement in 3 Years!

Next generation Z processor is optimized to run enterprise workloads with **embedded real time AI insights**

AI Specifications

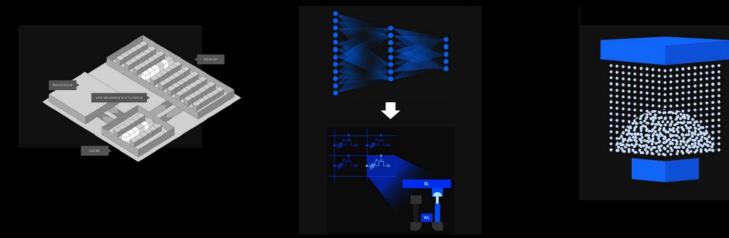
- 6 TFlops/chip
- Up to 200
 TFlops/system
- Focused on low-latency AI Inference

IBM Telum- A New Chapter In Vertically Integrated Chip Technology

Cloud

Patrick Moorhead Senior Contributor ()

I write about disruptive companies, technologies and usage models.


Analog NVM for in-memory compute

Eliminate the Von-Neumann bottleneck

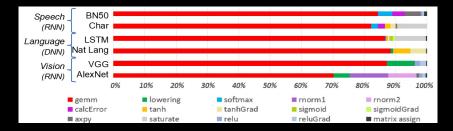
Perform computation directly in memory

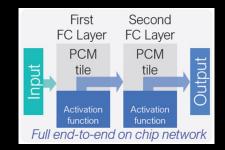
Map DNNs to analog cross-point arrays

NVM materials in array crosspoints to store weights

Key advantages of analog AI inference

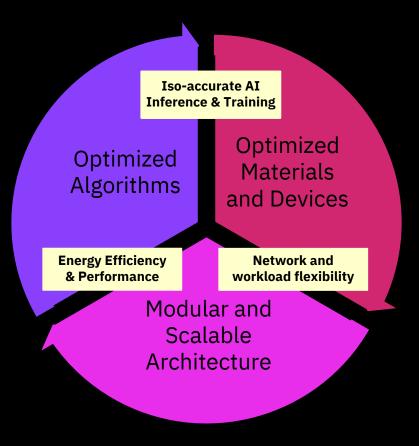
> Improved energy efficiency


Significantly higher power efficiency for in-memory MAC compute (DL Inference dominated by MAC ops)


Zero standby power (leakage)

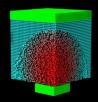
- Takes advantage of non-volatile memory technology
- Low start-up time (no need to fetch the weights from memory)

Very low latency


- > Takes advantage of pipelined 'weight stationary' architecture
- Latency ≤ 1 msec for most models/workloads.
- Advantageous for low mini-batch 'streaming' workloads

What should be attributes of an analog AI accelerator?

- Iso-accurate AI Inference and Training across multiple networks and workloads
- Flexible and modular architecture to scale to larger models
- Technology, algorithms & architecture for energy efficiency and performance



Materials/device requirements for AI inference

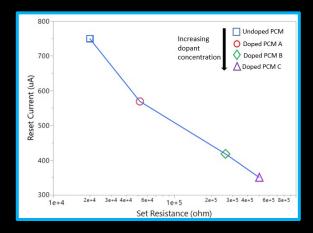
Phase change memory (PCM) e.g. Ge₂Sb₂Te₅

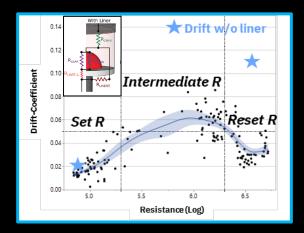
Forward inference (Fixed weight)

Long-term retention Excellent conductance stability (Non-idealities: Drift, Noise, Stochasticity & Temp variations). Modest endurance Modest programming speed

Training (Frequent weight updating) Modest retention High endurance Fast programming speed Symmetric & gradual conductance change*

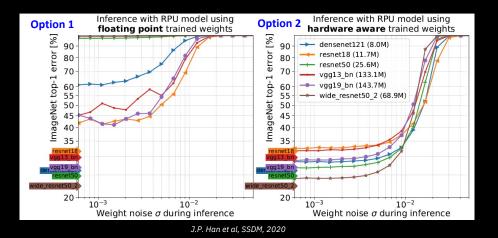
**Algorithmic innovation has mitigated need for symmetric update




Resistive RAM (RRAM)

Electro-chemical RAM (ECRAM) e.g. HfO₂ on WO₃ channel

PCM materials & device improvements



- > Doped phase change materials for optimized device characteristics
 - > Materials optimized to meet SET resistance and RESET current requirements
- Optimized projection liner for reduced drift-coefficient
 - Significant reduction in resistance-drift coefficient at RESET state
 - Also, reduced drift coefficient in intermediate resistance states

The path to ideal analog compute

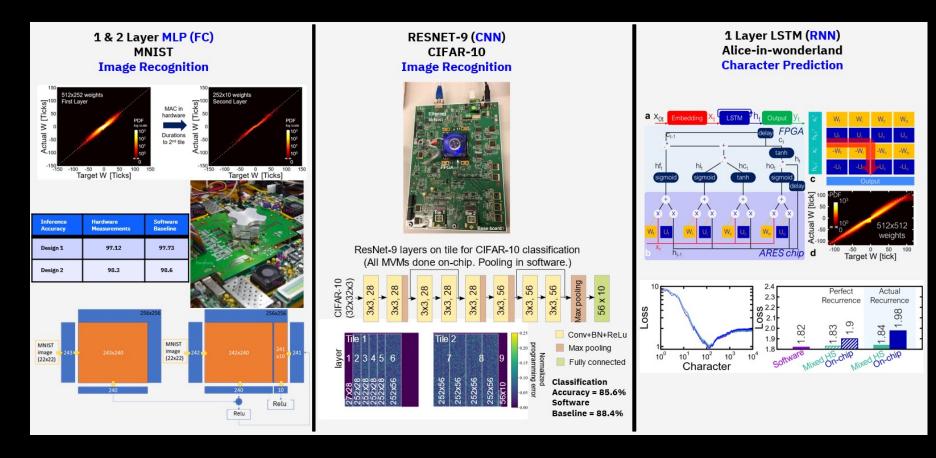
Algorithmic Boosters: Hardware-aware (re)training for 'Iso-accurate' Analog AI Inference

Incorporate analog deficiencies & non-idealities (noise, circuit offsets, ADC/DAC resolutions etc) into the forward training pass

- Re-training in a hardware-aware (HWA) fashion increases robustness of inference to analog NVM and peripheral circuit nonidealities
- Near Iso-accurate inference performance achieved for a variety of DNNs (CNNs, LSTM, Transformer) & workloads (NLP, Speech, Image)

The path to ideal analog compute Algorithmic Boosters: Algorithmic correction of asymmetry for Training

Conductivity


of voltage pulses

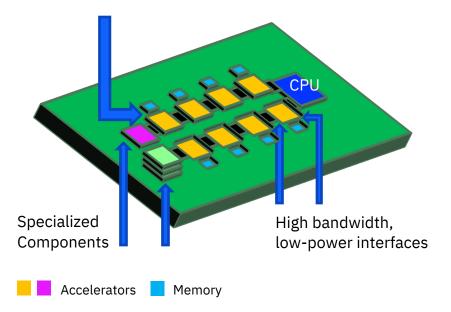
Conductivity

- Algorithmic innovation has mitigated need for symmetric updates
- Continued improvements in the training algorithm has helped ease stringent device requirements \geq for number of states & read noise

T. Gokmen et al., Front, Neurosci, 4:126 (2021)

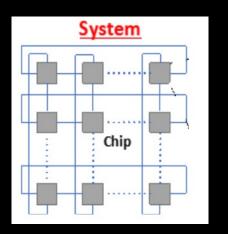
Inference: achievements to date

Heterogeneous Integration platform for AI


What's needed:

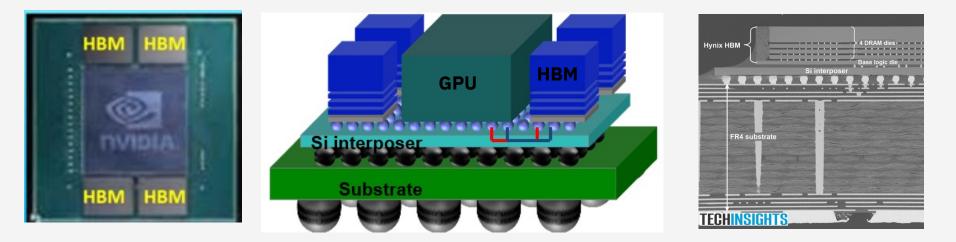
Interfaces between components

- High bandwidth (Gbps/mm)
- Energy-efficient (pJ/bit)
- Area-efficient (Gbps/mm²)
- Standards to allow connectivity between wide variety of components


Heterogeneous Integration Technologies

High compute density (tiling of multicore chiplets)

Memory requirements


Multi-chip network of Al accelerators training Resnet-50 (Each chip has several AI cores from: B. Fleishcher *et al.*, VLSI 2018)

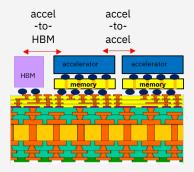
Memory bandwidth increase gives best "bang for buck"

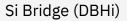
Today's GPUs

Key Attributes:

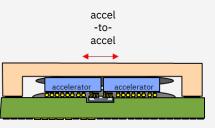
- Compute and memory closely coupled
- Si Interposer provides interconnect density
 - C4 scaling
 - Tight pitch wiring groundrules
- Utilizes standard organic substrate technology

Limitations:

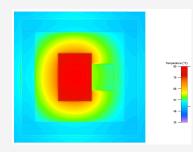

- Si Interposer body size
- Insertion losses associated w/ Si Interposer
- Cost (Si fab processing)
- Closed ecosystem


Our HI focus areas

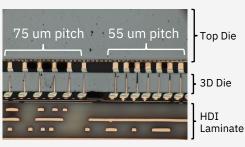
Increasing complexity / time to market


HDI Laminate

Enables tight pitch die interconnects at lower cost



Higher connectivity, flexible configuration


3D Integration Highest interconnect density, scalable

accelerator memory Simulation & Modeling

End user AI testbed

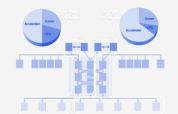
End-to-end environment for learning, development, test & simulation of AI leveraging IBM's state-of-the-art AI software tools and innovations

AI Supercomputer AiMOS

IBM Public Cloud

High-performance AI Supercomputer with a mix of commercial and pre-commercial tools Use a consumable suite of common Data Science tools

Composable Testbed


Experiment with various system-level topologies and configurations

AI Research Software Toolkits

State of the art AI research Innovations for AI-powered automation

AI Supercomputer powering key COVID-19 Research HPC COVID-19 Consortium

Cleveland Clinic

Multi-Epitope Vaccine Design.

"Repurposing of FDA-Approved Toremifene to treat COVID-19 by blocking the spike glycoprotein and NSP14 of SARS-CoV-2. All simulations were done in AiMOS using GROMACS 2020", Dr. William R. Martin and Dr. Feixiong Cheng

>48352 node-hours and over 6078 jobs in just Q2 2021 in AIMOS

Stony Brook University

Intelligent Platelet Dynamics. "We have developed AI/machine learning algorithms to extract the basic platelet geometrical data to understand the mechanisms of blood clot formation", Dr. Yuefan Deng

> 500x speedup with CPU-GPU complexes > 97% accuracy in platelet dynamics & mechanics

>13,413 node-hours and 221 jobs in Q2/2021 in AiMOS

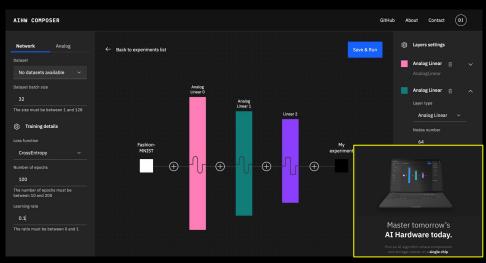
Weill Cornell Medicine

Simulations of molecular mechanisms of SARS-CoV-2 interactions with membranes to enable the design of small molecule inhibitors of viral entry. "Development of the first atomistic model of the fusion peptide region of the viral spike protein, and the first large scale molecular dynamics simulations of the membrane penetration process by this region that informed subsequent AI/MLenhanced protocols for discovery of inhibitors of this first step in the process of infectivity, were all carried out on the AiMOS computer ", Dr. Harel Weinstein and Dr. George Khelashvili

>48,937 node-hours and 17,047 jobs in Q2 of 2021 in AiMOS

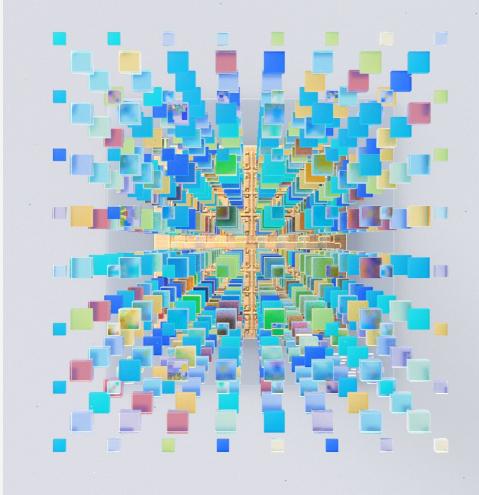
Open-source resources to evaluate analog AI technologies

Analog Hardware Toolkit


https://github.com/IBM/aihwkit

- Open-Source python toolkit for exploring inmemory computing devices for AI (deep learning) together with systems pillar
- Integrated with Pytorch
- Analog NN modules (fully connected layer, convolutional layer)
- Explore Analog DNN training using analog matvec and rank-1 update along with analog-specific SGD optimizers
- Explore Analog DNN inference with drift and statistical noise models
- Ready to download and install (using **pip**):
- ✤ pip install aihwkit

Analog Composer


https://aihw-composer.draco.res.ibm.com

- Web interface for exploration of Analog AI technology for DL training
- Explore performance of various NVM devices, models & training algorithms

Thank you

ibm.co/ai-hardware-center

