February 28, 2023
In 2010, Phiala Shanahan was an undergraduate at the University of Adelaide, wrapping up a degree in computational physics, when she heard of an unexpected discovery in particle physics. The news had nothing to do with any of the rare, exotic particles that physicists were searching for at the time. Rather, the revelation revolved around the mundane, ubiquitous proton.
That year, scientists had measured the proton’s radius and discovered that the particle was ever so slightly smaller than what previous experiments had reported. This new measurement threw into question what physicists had assumed was well-understood: What exactly was the size of the proton?
What would then be coined the “proton radius puzzle” immediately drew Shanahan’s interest, prompting a more fundamental question: What else don’t we know about this seemingly straightforward particle?
Complete article from MIT News.
Explore
MIT Physicists Observe Key Evidence of Unconventional Superconductivity in Magic-angle Graphene
The findings could open a route to new forms of higher-temperature superconductors.
Jennifer Chu | MIT News
A “seating chart” for Atoms Helps Locate Their Positions in Materials
Jennifer Chu | MIT News
The DIGIT imaging tool could enable the design of quantum devices and shed light on atomic-scale processes in cells and tissues.
AI System Learns from Many Types of Scientific Information and Runs Experiments to Discover New Materials
Zach Winn | MIT News
The new “CRESt” platform could help find solutions to real-world energy problems that have plagued the materials science and engineering community for decades.




